

YEAR 12 MATHEMATICS METHODS

Calculus, trigonometry and DRV's

Test 3

WESLEY COLLEGE
By daring & by doing

001

Marks:

/45

[1]

[1]

Calculator Free (20 marks)

Time allowed: 50 mins

1. [2 marks]

Name:

Determine if each of the p(x) as described are discrete probability functions. Justify your answer in either case.

a)				
x	0	1	2	5
P(X=x)	- 0.1	0.1	0.4	0.6

No, regartire probability of-0.1 ie P(0)=-0.1

b) $x -3 -2 1 4 \\ P(X = x) 0.1 0.3 0.2 0.4$

Yes, probabilities sum to 1.

2. [3 marks]

Given a binomial variable has a mean of 12 and a standard deviation of $\sqrt{8}$, find p, the probability of success and n, the number of trials.

$$np=12$$
 and $np(f-p)=8$

ie $12(1-p)=8$
 $1-p=\frac{2}{3}$
 $1p=\frac{1}{3}$
 $1p=\frac{1}{3}$

5

[10 marks] 3.

Determine:

a)
$$\frac{d}{dx}\cos^{5}(3x) = 5\cos(3x) (-\sin(3x).3)$$

= -15 $\sin(3x) \cos^{4}(3x)$

b)
$$\frac{d}{dx}e^{2x+1}\tan(5x) = 2e^{2x+1}\tan(5x) + 2e^{2x+1}\frac{5}{\cos^2(5x)}$$

= $e^{2x+1}\left(2\tan(5x) + \frac{5}{\cos^2(5x)}\right)$

c)
$$\int \frac{\sin(5x)}{4} dx = \frac{1}{4} \left(-\frac{\cos(5x)}{5} \right)$$
$$= -\frac{1}{20} \cos(5x) + c$$

d)
$$\int \cos(x) \sin^3(x) dx = \frac{1}{4} \sin^4(x) + C$$

e)
$$\frac{d}{dx} \int_{e}^{x^{3}} \cos(3t) dt = \cos(3x^{3}) \cdot 3x^{2}$$

$$= 3x^{2} \cos(3x^{3})$$

[2]

[2]

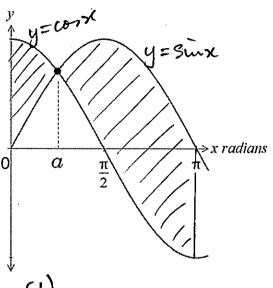
[2]

[2]

4. [5 marks]

Determine the area trapped between the functions $y = \sin(x)$, $y = \cos(x)$, x = 0 and $x = \pi$.

Hint: First, determine a.



Area =
$$\int_{0}^{\pi_{4}} (\cos x - \sin x) dx + \int_{0}^{\pi_{4}} (\sin x - \cos x) dx$$

= $\left[\sin x + \cos x \right]_{0}^{\pi_{4}} + \left[-\cos x - \sin x \right]_{\pi_{4}}^{\pi_{4}}$ (1)

$$= \sin(\frac{\pi}{4}) + \cos \frac{\pi}{4} - \sin(0) + \cos(0) - (\cos(\pi) + \sin(\pi) - \cos(\pi) + \sin(\pi))$$

$$(\cos(\pi) + \sin(\pi))$$

$$=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-0-1-[-1+0-(\frac{2}{2}+\frac{2}{2})]$$
(1)

NAME:	

Calculator Section

(25 marks)

5. [6 marks]

A company produces fruit sweets coated with either dark chocolate or milk chocolate. A large number of these fruit sweets are placed in a box. Twenty percent of the sweets in the box are coated with dark chocolate.

a) A random sample of ten sweets is taken from the box, explain the meaning of the calculation ${}^{10}C_4(0.2)^4(0.8)^6$ with respect to this sample?

The probability of randomly selecting 4 dark chocolates from a sample of 10 sweets

from the box.

(1)

b) (i) Find n given that ${}^{n}C_{4}(0.2)^{0}(0.8)^{n} = 0.16777$ ie $0.8^{n} = 0.16777$ Solving n = 8 (nearest integer) (1)

(ii) Explain the meaning of your answer from b) (i) with respect to the fruit sweets.

The probability of getting us dask (1) chocolates when 8 sweets are choosen.

[2]

[2]

6. [8 marks]

The random variable *X* has probability distribution:

<u>x</u>	1	3	5	7	9
P(X = x)	0.2	p	0.2	q	0.15

Given that E(X) = 4.5, determine:

a) The value of p and q.

$$E(x) = 4.5 \text{ (40)} \quad 0.55 + P+9 = 1$$
i.e. $P+9 = 0.45$

and
$$1(0.2) + 3p + 5(0.2) + 7q + 9(0.15) = 4.5$$

 $3p + 7q = 1.95$ (2)

$$p = 0.3$$

 $q = 0.15$

b)
$$P(4 < x \le 7)$$
 $0.2 + 0.15 = 0.35$

[3]

[1]

Given that $E(X^2) = 27.4$, determine:

c)
$$Var(X) = \sum (X^{2}) - E(X)^{2}$$

= 27.4 - 4.5²
= 7.15

[2]

d)
$$E(19-4X) = -4 (4.5) + 19$$
= 1

e)
$$Var(19-4X)$$
 = $H^{2}(7.15)$ = 114.4

7. [3 marks]

Suppose that 5% of all items coming off a production line are defective. Assume the manufacturer packages his items in boxes of six and guarantees "double your money back" if more than two items in a box are defective. On what percentage of the boxes will the manufacturer have to pay double money back?

$$X \sim B(6, 0.05)$$
 (1)

$$P(x>z) = 0.0022 \qquad (1)$$

! manufacturer will have to pay back double money 0.22% of the time.

8. [8 marks]

A soldier fires shots at a target at distances ranging from 25 m to 90 m. The probability of him hitting the target with a single shot is p. When firing from a distance of d m, $p = \frac{3}{200}(90-d)$. Each shot is fired independently.

The soldier fires 10 shots from a distance of 40 m.

a) Determine the probability that:

(i) Exactly 6 shots hit the target.

$$d = 40 \implies P = 0.75$$

 $X \sim B(10, 0.75)$ (1)
 $P(X=6) = 0.146$

(ii) At least 8 shots hit the target.

$$P(x78) = 0.5256$$

[3]

The soldier fires 20 shots from a distance of x m.

b) Determine to the nearest integer, the value of x if the soldier has an 80% chance of hitting the target at least once.

$$x \sim B(20, p)$$
 $P(x \geqslant 1) = 0.8$

ie $1 - P(x = 0) = 0.8$
 $P(x = 0) = 6.7$
ie $(1 - p)^{20} = 0.2$
(1)

 $P = 0.0773$ (1)

So $0.0773 = \frac{3}{200}(90 - x)$
 $x = 84.85$
 $x = 85$ m (neasest ad .)